
Modular toolkit for Data
Processing (MDP)

Tiziano Zito, Pietro Berkes, Niko Wilbert



Background

mdp-toolkit.sourceforge.net

implemented in Python, Object Oriented design
Open Source library (LGPL)
first release 2004
10k+ downloads, available in Debian and Python(x,y)

originated in research group of Laurenz Wiskott

. . . but also used outside computational neuroscience



Talk Overview

mdp-toolkit.sourceforge.net

1. Introducing the basic building blocks of MDP

2. Extending MDP, Parallelization, Example

3. Preview of BiNet package



Building blocks: Node

mdp-toolkit.sourceforge.net

Node: fundamental data processing element
Node classes correspond to algorithms. Interface methods:

train (optional)
support for multiple phases, batch, online, chunks, supervised,
unsupervised

execute
map n dimensional input to m dimensional output

inverse (optional)
inverse of execute method

data format: 2d numpy arrays
(1st index for samples, 2nd index for channels)
Nodes do automatic checks and conversions (dimensions, dtype).



Building blocks: Node

mdp-toolkit.sourceforge.net

Example: Principal Component Analysis (PCA)
reduce dimension of data from 10 to 5:

>>> import mdp

>>> import numpy as np

>>> data = np.random.random ((50 ,10)) # 50 data points

>>> node = mdp.nodes.PCANode(output_dim =5,

... dtype=’float32 ’)

>>> node.train(data)

>>> proj_data = node.execute(data)

shortcut:

>>> import mdp

>>> import numpy as np

>>> data = np.random.random ((50 ,10)) # 50 data points

>>> proj_data = mdp.pca(data , output_dim =5, dtype=’float32 ’)



Building blocks: Node

mdp-toolkit.sourceforge.net

Some available nodes:

PCA (standard, NIPALS)
ICA (FastICA, CuBICA, JADE, TDSEP)

Locally Linear Embedding
Hessian Locally Linear Embedding
Fisher Discriminant Analysis
Slow Feature Analysis

Independent Slow Feature Analysis
Restricted Boltzmann Machine

Growing Neural Gas
Factor Analysis
Gaussian Classifiers
Polynomial Expansion
Time Frames
Hit Parades
Noise
...

Or write your own node (and contribute it :-).



Building blocks: Flow

mdp-toolkit.sourceforge.net

Combine nodes in a Flow:

>>> flow = PCANode () + SFANode () + FastICANode ()

>>> flow.train(train_data)

>>> test_result = flow.execute(test_data)

>>> rec_test_data = flow.invert(test_result)

>>> flow += HitParadeNode ()

■ automatic organization: training, execution, inversion
■ automatic checks: dimensions and data formats
■ use arrays or iterators
■ crash recovery, checkpoints



Building blocks: Network

mdp-toolkit.sourceforge.net

mdp.hinet package for hierarchical networks

Layer (combine nodes horizontally in parallel)
Switchboard (routing between layers)
FlowNode (combine nodes into a “supernode”)

All these classes are nodes, combine them as you want.
Directed graphs can be emulated with hinet structures.



Building blocks: Network

mdp-toolkit.sourceforge.net

HTML representation of your network:

>>> mdp.hinet.show_flow(flow)

Use this in your reports or GUI.



Extending MDP: Writing Nodes

mdp-toolkit.sourceforge.net

Write your own node class:

>>> class MyNode(Node):

... def _train(self , x):

... ... training code ...

... def _execute(self , x):

... ... execution code ...

...

>>> flow = PCANode () + MyNode ()

■ integrate with the existing library
■ benefit from automatic checks and conversions
■ contribute your node to make it available to a broader audience



Parallelization

mdp-toolkit.sourceforge.net

■ for “embarrassingly parallel” problems
(data chunks can be processed independently)

■ use multiple cores or multiple machines
(experimental support for parallel python library)

■ uses abstract scheduler API (easy to write adaptor)
■ easy to implement for your own nodes
(implement _fork and _join methods)

Example:

>>> flow = PCANode () + SFANode ()

>>> scheduler = mdp.parallel.ProcessScheduler(n_processes =4)

>>> pflow = mdp.parallel.make_flow_parallel(flow)

>>> pflow.train(data , scheduler)



Real World Example

mdp-toolkit.sourceforge.net

■ object recognition system,
working on 155x155 pixel image sequences

■ several GB of training data for each training phase.
■ hierarchical network with nested nodes,
900 “supernodes” on lowest layer

■ training is distributed over network, takes multiple hours

[Franzius, M., Wilbert, N., and Wiskott, L., 2008]



Modular vs. Monolithic Approach

mdp-toolkit.sourceforge.net

Networks in MDP use a modular approach. Why?

■ flexibility
■ clearly separated modules reduce complexity
■ extensions (like parallization) do not depend on specific structure
■ only fixed cost for initial implementation

Comparison to monolithic approach:

■ network structure is hard-coded, quick and dirty implementation
■ all extensions (like parallization) must be hard-coded as well,
network changes affect low-level code in different locations



BiNet Package Overview

mdp-toolkit.sourceforge.net

mdp.binet package will allow data flow in both directions,
enabling for example error backpropagation and loops.

compatible with both the mpd.parallel and mdp.hinet packages.

HTML+JS based inspector for debugging and analysing

scheduled for inclusion in MDP 3.0 (maybe end of 2009)



BiNet Basic Ideas

mdp-toolkit.sourceforge.net

Node and Flow are superseded by BiNode and BiFlow
(but backward compatible as far as possible)

■ BiNode instances can have an id string and can be accessed via this
name (e.g. biflow["PCA_node_3"])

■ In addition to the 2d data array x a message dictionary msg
can be transmitted.

■ BiNode can specify a target node (basically like goto).



BiNet Features

mdp-toolkit.sourceforge.net

Helpful features to make messages very convenient:

Message content can be unspecific or target a specific node:

msg = {" labels ": general_labels , "fda_node=>labels ": fda_labels}

The message content can be requested by a node by simply having
argument names corresponding to message keys:

class BiFDANode(BiNode ):

def _train(x, labels ):

...

The BiNode base class does all the hard work.



BiNet Remarks

mdp-toolkit.sourceforge.net

Wait, did you say goto?

Consider the target option as a very simple “domain specific language”,
create your own abstraction for specific networks (e.g. [0,2,0]).

The other features like messages and the inspector can be used
independently of using targets.
Use the features you need, don’t care about the others.

Several additional features not mentioned, if you need it is probably
already in there ;-)



Embedding / Using MDP

mdp-toolkit.sourceforge.net

■ comprehensive documentation:
tutorial covering basic and advanced usage,
detailed doc-strings,
PEP8 compliant, commented, and pylint-clean code

■ API is stable and designed for straightforward embedding

■ unittest coverage (390+ unit tests)

■ minimal dependencies: Python + NumPy

■ used by:
PyMCA (X-ray fluorescence mapping),
PyMVPA (ML framework for neuroimaging data analysis),
Chandler (personal organizer application)



Thank you!

mdp-toolkit.sourceforge.net

mdp-toolkit.sourceforge.net


	Background
	Talk Overview
	Building blocks: Node
	Building blocks: Node
	Building blocks: Node
	Building blocks: Flow
	Building blocks: Network
	Building blocks: Network
	Extending MDP: Writing Nodes
	Parallelization
	Real World Example
	Modular vs. Monolithic Approach
	BiNet Package Overview
	BiNet Basic Ideas
	BiNet Features
	BiNet Remarks
	Embedding / Using MDP
	Thank you!

