Package mdp :: Class PreserveDimOnlineNode
[hide private]
[frames] | no frames]

Class PreserveDimOnlineNode


Abstract base class with output_dim == input_dim.

If one dimension is set then the other is set to the same value. If the dimensions are set to different values, then an InconsistentDimException is raised.

Instance Methods [hide private]
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from OnlineNode
 
__add__(self, other)
 
__init__(self, input_dim=None, output_dim=None, dtype=None, numx_rng=None)
If the input dimension and the output dimension are unspecified, they will be set when the train or execute method is called for the first time. If dtype is unspecified, it will be inherited from the data it receives at the first call of train or execute. Every subclass must take care of up- or down-casting the internal structures to match this argument (use _refcast private method when possible). If numx_rng is unspecified, it will be set to a random number generator with a random seed.
 
__repr__(self)
repr(x)
 
_check_input(self, x)
 
_check_params(self, x)
 
_get_supported_training_types(self)
Return the list of training types supported by this node.
 
_get_train_seq(self)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks. It can be used when a subclass defines multiple execution methods.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_set_numx_rng(self, rng)
 
get_current_train_iteration(self)
Return the index of the current training iteration.
 
get_numx_rng(self)
Return input dimensions.
 
set_numx_rng(self, rng)
Set numx random number generator. Note that subclasses should overwrite self._set_numx_rng when needed.
 
set_training_type(self, training_type)
Sets the training type
 
stop_training(self, *args, **kwargs)
Stop the training phase.
 
train(self, x, *args, **kwargs)
Update the internal structures according to the input data x.
    Inherited from Node
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__str__(self)
str(x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_stop_training(self, *args, **kwargs)
 
_train(self, x)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
execute(self, x, *args, **kwargs)
Process the data contained in x.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of numpy.dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
    Inherited from Node
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from OnlineNode
  _train_seq
List of tuples:
  numx_rng
Numpy seeded random number generator
  training_type
Training type (Read only)
    Inherited from Node
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

_set_input_dim(self, n)

 
Overrides: Node._set_input_dim

_set_output_dim(self, n)

 
Overrides: Node._set_output_dim