__init__(self,
input_dim=None,
output_dim=None,
dtype=None,
**kwargs)
(Constructor)
|
|
Bayesian ARD regression.
This node has been automatically generated by wrapping the scikits.learn.linear_model.bayes.ARDRegression class
from the sklearn library. The wrapped instance can be accessed
through the scikits_alg attribute.
Fit the weights of a regression model, using an ARD prior. The weights of
the regression model are assumed to be in Gaussian distributions.
Also estimate the parameters lambda (precisions of the distributions of the
weights) and alpha (precision of the distribution of the noise).
The estimation is done by an iterative procedures (Evidence Maximization)
Parameters
- X : array, shape = (n_samples, n_features)
- Training vectors.
- y : array, shape = (n_samples)
- Target values for training vectors
- n_iter : int, optional
- Maximum number of interations. Default is 300
- eps : float, optional
- Stop the algorithm if w has converged. Default is 1.e-3.
- alpha_1 : float, optional
- Hyper-parameter : shape parameter for the Gamma distribution prior
over the alpha parameter. Default is 1.e-6.
- alpha_2 : float, optional
- Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the alpha parameter. Default is 1.e-6.
- lambda_1 : float, optional
- Hyper-parameter : shape parameter for the Gamma distribution prior
over the lambda parameter. Default is 1.e-6.
- lambda_2 : float, optional
- Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the lambda parameter. Default is 1.e-6.
- compute_score : boolean, optional
- If True, compute the objective function at each step of the model.
Default is False.
- threshold_lambda : float, optional
- threshold for removing (pruning) weights with high precision from
the computation. Default is 1.e+4.
- fit_intercept : boolean, optional
- wether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
Default is True.
- verbose : boolean, optional
- Verbose mode when fitting the model. Default is False.
Attributes
coef_ : array, shape = (n_features)
- Coefficients of the regression model (mean of distribution)
alpha_ : float
- estimated precision of the noise.
lambda_ : array, shape = (n_features)
- estimated precisions of the weights.
sigma_ : array, shape = (n_features, n_features)
- estimated variance-covariance matrix of the weights
scores_ : float
- if computed, value of the objective function (to be maximized)
Methods
- fit(X, y) : self
- Fit the model
- predict(X) : array
- Predict using the model.
Examples
>>> from scikits.learn import linear_model
>>> clf = linear_model.ARDRegression()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
ARDRegression(n_iter=300, verbose=False, lambda_1=1e-06, lambda_2=1e-06,
fit_intercept=True, eps=0.001, threshold_lambda=10000.0,
alpha_2=1e-06, alpha_1=1e-06, compute_score=False)
>>> clf.predict([[1, 1]])
array([ 1.])
Notes
See examples/linear_model/plot_ard.py for an example.
- Overrides:
object.__init__
|