Convolve input data with filter banks.
Convolution can be selected to be executed by linear filtering of the data, or
in the frequency domain using a Discrete Fourier Transform.
Input data can be given as 3D data, each row being a 2D array
to be convolved with the filters, or as 2D data, in which case
the input_shape argument must be specified.
|
|
__init__(self,
filters,
input_shape=None,
approach='fft',
mode='full',
boundary='fill',
fillvalue=0,
output_2d=True,
input_dim=None,
dtype=None)
Initializes an object of type 'Convolution2DNode'. |
|
|
|
|
|
|
list
|
|
|
|
|
|
|
execute(self,
x)
Process the data contained in x. |
|
|
|
|
|
|
|
|
|
|
is_invertible(self)
Return True if the node can be inverted, False otherwise. |
|
|
|
|
is_trainable(self)
Return True if the node can be trained, False otherwise. |
|
|
|
|
|
|
|
|
|
Inherited from unreachable.newobject:
__long__,
__native__,
__nonzero__,
__unicode__,
next
Inherited from object:
__delattr__,
__format__,
__getattribute__,
__hash__,
__new__,
__reduce__,
__reduce_ex__,
__setattr__,
__sizeof__,
__subclasshook__
|
|
|
|
|
|
__call__(self,
x,
*args,
**kwargs)
Calling an instance of Node is equivalent to calling
its execute method. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_refcast(self,
x)
Helper function to cast arrays to the internal dtype. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
copy(self,
protocol=None)
Return a deep copy of the node. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inverse(self,
y,
*args,
**kwargs)
Invert y. |
|
|
|
|
is_training(self)
Return True if the node is in the training phase,
False otherwise. |
|
|
|
|
save(self,
filename,
protocol=-1)
Save a pickled serialization of the node to filename.
If filename is None, return a string. |
|
|
|
|
set_dtype(self,
t)
Set internal structures' dtype. |
|
|
|
|
|
|
|
|
|
|
|
|
|
train(self,
x,
*args,
**kwargs)
Update the internal structures according to the input data x. |
|
|