Package mdp :: Package nodes :: Class DiscreteHopfieldClassifier
[hide private]
[frames] | no frames]

Class DiscreteHopfieldClassifier


Node for simulating a simple discrete Hopfield model
Instance Methods [hide private]
 
__init__(self, execute_method=None, input_dim=None, output_dim=None, dtype='b')
Initializes an object of type 'DiscreteHopfieldClassifier'
list
_get_supported_dtypes(self)
Returns: The list of dtypes supported by this node.
 
_label(self, x, threshold=0)
Retrieves patterns from the associative memory.
 
_label_one(self, pattern, threshold)
 
_stop_training(self)
 
_train(self, x)
Provide the hopfield net with the possible states.
 
_train_one(self, pattern)
 
label(self, x, threshold=0)
Retrieves patterns from the associative memory.
 
stop_training(self)
Stop the training phase.
 
train(self, x)
Provide the hopfield net with the possible states.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from ClassifierNode
 
_execute(self, x)
 
_prob(self, x, *args, **kargs)
 
execute(self, x)
Process the data contained in x.
 
prob(self, x, *args, **kwargs)
This function does classification or regression on a test vector T given a model with probability information. This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVC class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
 
rank(self, x, threshold=None)
Returns ordered list with all labels ordered according to prob(x) (e.g., [[3 1 2], [2 1 3], ...]).
    Inherited from PreserveDimNode
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of numpy.dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
    Inherited from Node
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]
float load_parameter
int memory_size

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, execute_method=None, input_dim=None, output_dim=None, dtype='b')
(Constructor)

 
Initializes an object of type 'DiscreteHopfieldClassifier'
Parameters:
  • execute_method (str) - Set to string value 'label', 'rank', or 'prob' to force the corresponding classification method being used instead of the standard identity execution (which is used when execute_method has the default value None). This can be used when the node is last in a flow, the return value from Flow.execute will then consist of the classification results.
  • input_dim (int) - The input dimensionality.
  • output_dim (int) - The output dimensionality.
  • dtype (numpy.dtype or str) - The datatype.
Overrides: object.__init__

_get_supported_dtypes(self)

 

Return the list of dtypes supported by this node.

The types can be specified in any format allowed by numpy.dtype.

Returns: list
The list of dtypes supported by this node.
Overrides: Node._get_supported_dtypes

_label(self, x, threshold=0)

 
Retrieves patterns from the associative memory.
Parameters:
  • x - A matrix having different variables on different columns and observations on rows.
  • threshold - numpy.ndarray
Returns:
The patterns.
Overrides: ClassifierNode._label

_label_one(self, pattern, threshold)

 

_stop_training(self)

 
Overrides: Node._stop_training

_train(self, x)

 
Provide the hopfield net with the possible states.
Parameters:
  • x (numpy.ndarray) - A matrix having different variables on different columns and observations on rows.
Overrides: Node._train

_train_one(self, pattern)

 

label(self, x, threshold=0)

 
Retrieves patterns from the associative memory.
Parameters:
  • x - A matrix having different variables on different columns and observations on rows.
  • threshold - numpy.ndarray
Returns:
The patterns.
Overrides: ClassifierNode.label

stop_training(self)

 

Stop the training phase.

By default, subclasses should overwrite _stop_training to implement this functionality. The docstring of the _stop_training method overwrites this docstring.

Overrides: Node.stop_training

train(self, x)

 
Provide the hopfield net with the possible states.
Parameters:
  • x (numpy.ndarray) - A matrix having different variables on different columns and observations on rows.
Overrides: Node.train

Property Details [hide private]

load_parameter

Note: The quality of memory recall for a Hopfield net breaks down when the load parameter is larger than 0.14.
Get Method:
unreachable.load_parameter(self) - Returns: The load parameter of the Hopfield net.
Type:
float

memory_size

Get Method:
unreachable.memory_size(self) - Returns: The Hopfield net's memory size
Type:
int