Perform a supervised Gaussian classification.
Given a set of labelled data, the node fits a gaussian distribution
to each class.
|
__init__(self,
execute_method=False,
input_dim=None,
output_dim=None,
dtype=None)
Initializes an object of type 'GaussianClassifier' |
|
|
|
|
float
|
_gaussian_prob(self,
x,
lbl_idx)
Return the probability of the data points x with respect to a
gaussian. |
|
|
list
|
_label(self,
x)
Classify the input data using Maximum A-Posteriori. |
|
|
|
_prob(self,
x)
Return the posterior probability of each class given the input in a dict. |
|
|
|
|
|
|
|
|
float
|
|
list
|
label(self,
x)
Classify the input data using Maximum A-Posteriori. |
|
|
|
prob(self,
x)
Return the posterior probability of each class given the input in a dict. |
|
|
|
|
|
train(self,
x,
labels)
Update the internal structures according to the input data x . |
|
|
Inherited from unreachable.newobject :
__long__ ,
__native__ ,
__nonzero__ ,
__unicode__ ,
next
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__ ,
__sizeof__ ,
__subclasshook__
|
|
|
|
execute(self,
x)
Process the data contained in x . |
|
|
|
rank(self,
x,
threshold=None)
Returns ordered list with all labels ordered according to prob(x)
(e.g., [[3 1 2], [2 1 3], ...]). |
|
|
|
|
|
|
|
|
|
__call__(self,
x,
*args,
**kwargs)
Calling an instance of Node is equivalent to calling
its execute method. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_refcast(self,
x)
Helper function to cast arrays to the internal dtype. |
|
|
|
|
|
copy(self,
protocol=None)
Return a deep copy of the node. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inverse(self,
y,
*args,
**kwargs)
Invert y . |
|
|
|
is_training(self)
Return True if the node is in the training phase,
False otherwise. |
|
|
|
save(self,
filename,
protocol=-1)
Save a pickled serialization of the node to filename .
If filename is None, return a string. |
|
|
|
set_dtype(self,
t)
Set internal structures' dtype. |
|
|
|
|
|
|