Perform a Hessian Locally Linear Embedding analysis on the data.
Reference
Implementation based on algorithm outlined in
Donoho, D. L., and Grimes, C., Hessian Eigenmaps: new locally linear
embedding techniques for high-dimensional data, Proceedings of the
National Academy of Sciences 100(10): 5591-5596, 2003.
Original code contributed by: Jake Vanderplas, University of Washington
|
__init__(self,
k,
r=0.001,
svd=False,
verbose=False,
input_dim=None,
output_dim=None,
dtype=None)
Initializes an object of type 'HLLENode'. |
|
|
|
_stop_training(self)
Concatenate the collected data in a single array. |
|
|
|
stop_training(self)
Concatenate the collected data in a single array. |
|
|
Inherited from unreachable.newobject :
__long__ ,
__native__ ,
__nonzero__ ,
__unicode__ ,
next
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__ ,
__sizeof__ ,
__subclasshook__
|
|
_adjust_output_dim(self)
This function is called if we need to compute the number of
output dimensions automatically as some quantities that are
useful later can be precalculated.. |
|
|
|
|
|
execute(self,
x)
Process the data contained in x . |
|
|
|
_train(self,
*args)
Collect all input data in a list. |
|
|
|
train(self,
*args)
Collect all input data in a list. |
|
|
|
|
|
__call__(self,
x,
*args,
**kwargs)
Calling an instance of Node is equivalent to calling
its execute method. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_refcast(self,
x)
Helper function to cast arrays to the internal dtype. |
|
|
|
|
|
|
|
|
|
copy(self,
protocol=None)
Return a deep copy of the node. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inverse(self,
y,
*args,
**kwargs)
Invert y . |
|
|
|
is_training(self)
Return True if the node is in the training phase,
False otherwise. |
|
|
|
save(self,
filename,
protocol=-1)
Save a pickled serialization of the node to filename .
If filename is None, return a string. |
|
|
|
set_dtype(self,
t)
Set internal structures' dtype. |
|
|
|
|
|
|