Incremental Slow Feature Analysis (IncSFA) extracts the slowly varying
components from the input data incrementally.
Reference
More information about IncSFA
can be found in Kompella V.R, Luciw M. and Schmidhuber J., Incremental Slow
Feature Analysis: Adaptive Low-Complexity Slow Feature Updating from
High-Dimensional Input Streams, Neural Computation, 2012.
|
__init__(self,
eps=0.05,
whitening_output_dim=None,
remove_mean=True,
avg_n=None,
amn_params=( 20, 200, 2000, 3) ,
init_pca_vectors=None,
init_mca_vectors=None,
input_dim=None,
output_dim=None,
dtype=None,
numx_rng=None)
Initialize an object of type 'SFANode'. |
|
|
str
|
|
|
|
|
|
|
_execute(self,
x)
Return slow feature response. |
|
|
|
_inverse(self,
y)
Return inverse of the slow feature response. |
|
|
|
|
|
|
|
|
|
|
|
|
|
_train(self,
x,
new_episode=None)
Update slow features. |
|
|
|
execute(self,
x)
Return slow feature response. |
|
|
|
inverse(self,
y)
Return inverse of the slow feature response. |
|
|
|
train(self,
x,
new_episode=None)
Update slow features. |
|
|
Inherited from unreachable.newobject :
__long__ ,
__native__ ,
__nonzero__ ,
__unicode__ ,
next
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__ ,
__sizeof__ ,
__subclasshook__
|
|
|
|
|
|
|
|
|
|
_pre_execution_checks(self,
x)
This method contains all pre-execution checks.
It can be used when a subclass defines multiple execution methods. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__call__(self,
x,
*args,
**kwargs)
Calling an instance of Node is equivalent to calling
its execute method. |
|
|
|
|
|
|
|
|
|
|
|
_refcast(self,
x)
Helper function to cast arrays to the internal dtype. |
|
|
|
|
|
copy(self,
protocol=None)
Return a deep copy of the node. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
is_training(self)
Return True if the node is in the training phase,
False otherwise. |
|
|
|
save(self,
filename,
protocol=-1)
Save a pickled serialization of the node to filename .
If filename is None, return a string. |
|
|
|
set_dtype(self,
t)
Set internal structures' dtype. |
|
|
|
|
|
|