Package mdp :: Package nodes :: Class LARSScikitsLearnNode
[hide private]
[frames] | no frames]

Class LARSScikitsLearnNode


Least Angle Regression model a.k.a. LAR This node has been automatically generated by wrapping the scikits.learn.linear_model.least_angle.LARS class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

n_features : int, optional
Number of selected active features
fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).

Attributes

coef_ : array, shape = [n_features]
parameter vector (w in the fomulation formula)
intercept_ : float
independent term in decision function.

Examples

>>> from scikits.learn import linear_model
>>> clf = linear_model.LARS()
>>> clf.fit([[-1,1], [0, 0], [1, 1]], [-1, 0, -1], max_features=1)
LARS(verbose=False, fit_intercept=True)
>>> print clf.coef_
[ 0.         -0.81649658]

References

http://en.wikipedia.org/wiki/Least_angle_regression

See also

lars_path, LassoLARS

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Least Angle Regression model a.k.a. LAR This node has been automatically generated by wrapping the scikits.learn.linear_model.least_angle.LARS class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Predict using the linear model This node has been automatically generated by wrapping the scikits.learn.linear_model.least_angle.LARS class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
 
stop_training(self, **kwargs)
Fit the model using X, y as training data. This node has been automatically generated by wrapping the scikits.learn.linear_model.least_angle.LARS class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of numpy.dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
bool
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Least Angle Regression model a.k.a. LAR This node has been automatically generated by wrapping the scikits.learn.linear_model.least_angle.LARS class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

n_features : int, optional
Number of selected active features
fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).

Attributes

coef_ : array, shape = [n_features]
parameter vector (w in the fomulation formula)
intercept_ : float
independent term in decision function.

Examples

>>> from scikits.learn import linear_model
>>> clf = linear_model.LARS()
>>> clf.fit([[-1,1], [0, 0], [1, 1]], [-1, 0, -1], max_features=1)
LARS(verbose=False, fit_intercept=True)
>>> print clf.coef_
[ 0.         -0.81649658]

References

http://en.wikipedia.org/wiki/Least_angle_regression

See also

lars_path, LassoLARS

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Predict using the linear model This node has been automatically generated by wrapping the scikits.learn.linear_model.least_angle.LARS class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

X : numpy array of shape [n_samples, n_features]

Returns

C : array, shape = [n_samples]
Returns predicted values.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Returns: bool
A boolean indicating whether the node can be trained.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Fit the model using X, y as training data. This node has been automatically generated by wrapping the scikits.learn.linear_model.least_angle.LARS class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

X : array-like, shape = [n_samples, n_features]
Training data.
y : array-like, shape = [n_samples]
Target values.
precompute : True | False | 'auto' | array-like
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument.

Returns

self : object
returns an instance of self.
Overrides: Node.stop_training