Compute least-square, multivariate linear regression on the input
data, i.e., learn coefficients b_j
so that the linear combination
y_i = b_0 + b_1 x_1 + ... b_N x_N
, for i = 1 ... M
, minimizes
the sum of squared error given the training x
's and y
's.
|
__init__(self,
with_bias=True,
use_pinv=False,
input_dim=None,
output_dim=None,
dtype=None)
Initializes an object of type 'LinearRegressionNode'. |
|
|
numpy.ndarray
|
_add_constant(self,
x)
Add a constant term to the vector 'x'.
x -> [1 x] |
|
|
|
|
|
|
|
|
|
|
|
execute(self,
x)
Process the data contained in x . |
|
|
|
|
|
train(self,
x,
y)
Update the internal structures according to the input data x . |
|
|
Inherited from unreachable.newobject :
__long__ ,
__native__ ,
__nonzero__ ,
__unicode__ ,
next
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__ ,
__sizeof__ ,
__subclasshook__
|
|
|
|
__call__(self,
x,
*args,
**kwargs)
Calling an instance of Node is equivalent to calling
its execute method. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_refcast(self,
x)
Helper function to cast arrays to the internal dtype. |
|
|
|
|
|
|
|
|
|
copy(self,
protocol=None)
Return a deep copy of the node. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inverse(self,
y,
*args,
**kwargs)
Invert y . |
|
|
|
is_training(self)
Return True if the node is in the training phase,
False otherwise. |
|
|
|
save(self,
filename,
protocol=-1)
Save a pickled serialization of the node to filename .
If filename is None, return a string. |
|
|
|
set_dtype(self,
t)
Set internal structures' dtype. |
|
|
|
|
|
|