Package mdp :: Package nodes :: Class LinearRegressionNode
[hide private]
[frames] | no frames]

Class LinearRegressionNode


Compute least-square, multivariate linear regression on the input data, i.e., learn coefficients b_j so that the linear combination y_i = b_0 + b_1 x_1 + ... b_N x_N , for i = 1 ... M, minimizes the sum of squared error given the training x's and y's.

This is a supervised learning node, and requires input data x and target data y to be supplied during training (see train docstring).

Instance Methods [hide private]
 
__init__(self, with_bias=True, use_pinv=False, input_dim=None, output_dim=None, dtype=None)
Initializes an object of type 'LinearRegressionNode'.
numpy.ndarray
_add_constant(self, x)
Add a constant term to the vector 'x'. x -> [1 x]
 
_check_train_args(self, x, y)
 
_execute(self, x)
 
_stop_training(self)
 
_train(self, x, y)
 
execute(self, x)
Process the data contained in x.
 
stop_training(self)
Stop the training phase.
 
train(self, x, y)
Update the internal structures according to the input data x.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of numpy.dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
    Inherited from Node
 
is_trainable()
Return True if the node can be trained, False otherwise.
Instance Variables [hide private]
  beta
The coefficients of the linear regression.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, with_bias=True, use_pinv=False, input_dim=None, output_dim=None, dtype=None)
(Constructor)

 
Initializes an object of type 'LinearRegressionNode'.
Parameters:
  • with_bias (bool) - If true, the linear model includes a constant term.

    • True: y_i = b_0 + b_1 x_1 + ... b_N x_N
    • False: y_i = b_1 x_1 + ... b_N x_N

    If present, the constant term is stored in the first column of self.beta. Default: True.

  • use_pinv (bool) - If true, uses the pseudo-inverse function to compute the linear regression coefficients, which is more robust in some cases. Default: False.
  • input_dim (int) - Dimensionality of the input. Default is None.
  • output_dim (int) - Dimensionality of the output. Default is None.
  • dtype (numpy.dtype, str) - Datatype of the input. Default is None.
Overrides: object.__init__

_add_constant(self, x)

 
Add a constant term to the vector 'x'. x -> [1 x]
Parameters:
  • x (numpy.ndarray) - The vector a constant term is appended to.
Returns: numpy.ndarray
The altered vector.

_check_train_args(self, x, y)

 
Overrides: Node._check_train_args

_execute(self, x)

 
Overrides: Node._execute

_stop_training(self)

 
Overrides: Node._stop_training

_train(self, x, y)

 
Parameters:
  • x (numpy.ndarray) - Array of different input observations.
  • y (numpy.ndarray) - Array of size (x.shape[0], output_dim) that contains the observed output to the input x's.
Overrides: Node._train

execute(self, x)

 

Process the data contained in x.

If the object is still in the training phase, the function stop_training will be called. x is a matrix having different variables on different columns and observations on the rows.

By default, subclasses should overwrite _execute to implement their execution phase. The docstring of the _execute method overwrites this docstring.

Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

stop_training(self)

 

Stop the training phase.

By default, subclasses should overwrite _stop_training to implement this functionality. The docstring of the _stop_training method overwrites this docstring.

Overrides: Node.stop_training

train(self, x, y)

 

Update the internal structures according to the input data x.

x is a matrix having different variables on different columns and observations on the rows.

By default, subclasses should overwrite _train to implement their training phase. The docstring of the _train method overwrites this docstring.

Note: a subclass supporting multiple training phases should implement the same signature for all the training phases and document the meaning of the arguments in the _train method doc-string. Having consistent signatures is a requirement to use the node in a flow.

Parameters:
  • x (numpy.ndarray) - Array of different input observations.
  • y (numpy.ndarray) - Array of size (x.shape[0], output_dim) that contains the observed output to the input x's.
Overrides: Node.train

Instance Variable Details [hide private]

beta

The coefficients of the linear regression.