| Home | Trees | Indices | Help |
|
|---|
|
|
Non-Negative matrix factorization by Projected Gradient (NMF)
This node has been automatically generated by wrapping the ``scikits.learn.decomposition.nmf.NMF`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
**Parameters**
X: array, [n_samples, n_features]
Data the model will be fit to.
n_components: int or None
Number of components
if n_components is not set all components are kept
init: 'nndsvd' | 'nndsvda' | 'nndsvdar' | int | RandomState
Method used to initialize the procedure.
Default: 'nndsvdar'
Valid options:
- 'nndsvd': default Nonnegative Double Singular Value
- Decomposition (NNDSVD) initialization (better for sparseness)
- 'nndsvda': NNDSVD with zeros filled with the average of X
- (better when sparsity is not desired)
- 'nndsvdar': NNDSVD with zeros filled with small random values
- (generally faster, less accurate alternative to NNDSVDa
- for when sparsity is not desired)
- int seed or RandomState: non-negative random matrices
sparseness: 'data' | 'components' | None
Where to enforce sparsity in the model.
Default: None
beta: double
Degree of sparseness, if sparseness is not None. Larger values mean
more sparseness.
Default: 1
eta: double
Degree of correctness to mantain, if sparsity is not None. Smaller
values mean larger error.
Default: 0.1
tol: double
Tolerance value used in stopping conditions.
Default: 1e-4
max_iter: int
Number of iterations to compute.
Default: 200
nls_max_iter: int
Number of iterations in NLS subproblem.
Default: 2000
**Attributes**
components_: array, [n_components, n_features]
Non-negative components of the data
reconstruction_err_: number
Frobenius norm of the matrix difference between the
training data and the reconstructed data from the
fit produced by the model. || X - WH ||_2
**Examples**
>>> import numpy as np
>>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from scikits.learn.decomposition import ProjectedGradientNMF
>>> model = ProjectedGradientNMF(n_components=2, init=0)
>>> model.fit(X) #doctest: +ELLIPSIS
ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200,
init=<mtrand.RandomState object at 0x...>, beta=1,
sparseness=None, n_components=2, tol=0.0001)
>>> model.components_
array([[ 0.77032744, 0.11118662],
[ 0.38526873, 0.38228063]])
>>> model.reconstruction_err_ #doctest: +ELLIPSIS
0.00746...
>>> model = ProjectedGradientNMF(n_components=2, init=0,
... sparseness='components')
>>> model.fit(X) #doctest: +ELLIPSIS
ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200,
init=<mtrand.RandomState object at 0x...>, beta=1,
sparseness='components', n_components=2, tol=0.0001)
>>> model.components_
array([[ 1.67481991, 0.29614922],
[-0. , 0.4681982 ]])
>>> model.reconstruction_err_ #doctest: +ELLIPSIS
0.513...
**Notes**
This implements C.-J. Lin. Projected gradient methods
for non-negative matrix factorization. Neural
Computation, 19(2007), 2756-2779.
http://www.csie.ntu.edu.tw/~cjlin/nmf/
NNDSVD is introduced in
C. Boutsidis, E. Gallopoulos: SVD based
initialization: A head start for nonnegative
matrix factorization - Pattern Recognition, 2008
http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf
|
|||
|
|||
|
|||
| list |
|
||
|
|||
|
|||
|
|||
|
Inherited from Inherited from |
|||
| Inherited from Cumulator | |||
|---|---|---|---|
|
|||
|
|||
| Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
| bool |
|
||
|
|||
|
Inherited from |
|||
| Inherited from Node | |||
|---|---|---|---|
|
_train_seq List of tuples: |
|||
|
dtype dtype |
|||
|
input_dim Input dimensions |
|||
|
output_dim Output dimensions |
|||
|
supported_dtypes Supported dtypes |
|||
|
|||
Non-Negative matrix factorization by Projected Gradient (NMF)
This node has been automatically generated by wrapping the ``scikits.learn.decomposition.nmf.NMF`` class
from the ``sklearn`` library. The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
**Parameters**
X: array, [n_samples, n_features]
Data the model will be fit to.
n_components: int or None
Number of components
if n_components is not set all components are kept
init: 'nndsvd' | 'nndsvda' | 'nndsvdar' | int | RandomState
Method used to initialize the procedure.
Default: 'nndsvdar'
Valid options:
- 'nndsvd': default Nonnegative Double Singular Value
- Decomposition (NNDSVD) initialization (better for sparseness)
- 'nndsvda': NNDSVD with zeros filled with the average of X
- (better when sparsity is not desired)
- 'nndsvdar': NNDSVD with zeros filled with small random values
- (generally faster, less accurate alternative to NNDSVDa
- for when sparsity is not desired)
- int seed or RandomState: non-negative random matrices
sparseness: 'data' | 'components' | None
Where to enforce sparsity in the model.
Default: None
beta: double
Degree of sparseness, if sparseness is not None. Larger values mean
more sparseness.
Default: 1
eta: double
Degree of correctness to mantain, if sparsity is not None. Smaller
values mean larger error.
Default: 0.1
tol: double
Tolerance value used in stopping conditions.
Default: 1e-4
max_iter: int
Number of iterations to compute.
Default: 200
nls_max_iter: int
Number of iterations in NLS subproblem.
Default: 2000
**Attributes**
components_: array, [n_components, n_features]
Non-negative components of the data
reconstruction_err_: number
Frobenius norm of the matrix difference between the
training data and the reconstructed data from the
fit produced by the model. || X - WH ||_2
**Examples**
>>> import numpy as np
>>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from scikits.learn.decomposition import ProjectedGradientNMF
>>> model = ProjectedGradientNMF(n_components=2, init=0)
>>> model.fit(X) #doctest: +ELLIPSIS
ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200,
init=<mtrand.RandomState object at 0x...>, beta=1,
sparseness=None, n_components=2, tol=0.0001)
>>> model.components_
array([[ 0.77032744, 0.11118662],
[ 0.38526873, 0.38228063]])
>>> model.reconstruction_err_ #doctest: +ELLIPSIS
0.00746...
>>> model = ProjectedGradientNMF(n_components=2, init=0,
... sparseness='components')
>>> model.fit(X) #doctest: +ELLIPSIS
ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200,
init=<mtrand.RandomState object at 0x...>, beta=1,
sparseness='components', n_components=2, tol=0.0001)
>>> model.components_
array([[ 1.67481991, 0.29614922],
[-0. , 0.4681982 ]])
>>> model.reconstruction_err_ #doctest: +ELLIPSIS
0.513...
**Notes**
This implements C.-J. Lin. Projected gradient methods
for non-negative matrix factorization. Neural
Computation, 19(2007), 2756-2779.
http://www.csie.ntu.edu.tw/~cjlin/nmf/
NNDSVD is introduced in
C. Boutsidis, E. Gallopoulos: SVD based
initialization: A head start for nonnegative
matrix factorization - Pattern Recognition, 2008
http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf
|
|
|
|
Transform the data X according to the fitted NMF model
This node has been automatically generated by wrapping the
Returns
|
|
|
Learn a NMF model for the data X.
This node has been automatically generated by wrapping the
Returns self
|
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1-MDP on Mon Apr 27 21:56:20 2020 | http://epydoc.sourceforge.net |