Package mdp :: Package nodes :: Class NeighborsRegressorScikitsLearnNode
[hide private]
[frames] | no frames]

Class NeighborsRegressorScikitsLearnNode


Regression based on k-Nearest Neighbor Algorithm This node has been automatically generated by wrapping the scikits.learn.neighbors.NeighborsRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. The target is predicted by local interpolation of the targets associated of the k-Nearest Neighbors in the training set.

Different modes for estimating the result can be set via parameter mode. 'barycenter' will apply the weights that best reconstruct the point from its neighbors while 'mean' will apply constant weights to each point.

Parameters

n_neighbors : int, optional
Default number of neighbors. Defaults to 5.
window_size : int, optional
Window size passed to BallTree
mode : {'mean', 'barycenter'}, optional
Weights to apply to labels.
algorithm : {'auto', 'ball_tree', 'brute'}, optional
Algorithm used to compute the nearest neighbors. 'ball_tree' will construct a BallTree, while 'brute' will perform brute-force search. 'auto' will guess the most appropriate based on current dataset.

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from scikits.learn.neighbors import NeighborsRegressor
>>> neigh = NeighborsRegressor(n_neighbors=2)
>>> neigh.fit(X, y)
NeighborsRegressor(n_neighbors=2, window_size=1, mode='mean',
          algorithm='auto')
>>> print neigh.predict([[1.5]])
[ 0.5]

Notes

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Regression based on k-Nearest Neighbor Algorithm This node has been automatically generated by wrapping the scikits.learn.neighbors.NeighborsRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. The target is predicted by local interpolation of the targets associated of the k-Nearest Neighbors in the training set.
list
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_label(self, x)
 
_stop_training(self, **kwargs)
Transform the data and labels lists to array objects and reshape them.
 
label(self, x)
Predict the target for the provided data This node has been automatically generated by wrapping the scikits.learn.neighbors.NeighborsRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
 
stop_training(self, **kwargs)
Fit the model using X, y as training data This node has been automatically generated by wrapping the scikits.learn.neighbors.NeighborsRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from ClassifierCumulator
 
_check_train_args(self, x, labels)
 
_train(self, x, labels)
Cumulate all input data in a one dimensional list.
 
train(self, x, labels)
Cumulate all input data in a one dimensional list.
    Inherited from ClassifierNode
 
_execute(self, x)
 
_prob(self, x, *args, **kargs)
 
execute(self, x)
Process the data contained in x.
 
prob(self, x, *args, **kwargs)
This function does classification or regression on a test vector T given a model with probability information. This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVC class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
 
rank(self, x, threshold=None)
Returns ordered list with all labels ordered according to prob(x) (e.g., [[3 1 2], [2 1 3], ...]).
    Inherited from PreserveDimNode
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of numpy.dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
bool
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Regression based on k-Nearest Neighbor Algorithm This node has been automatically generated by wrapping the scikits.learn.neighbors.NeighborsRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. The target is predicted by local interpolation of the targets associated of the k-Nearest Neighbors in the training set.

Different modes for estimating the result can be set via parameter mode. 'barycenter' will apply the weights that best reconstruct the point from its neighbors while 'mean' will apply constant weights to each point.

Parameters

n_neighbors : int, optional
Default number of neighbors. Defaults to 5.
window_size : int, optional
Window size passed to BallTree
mode : {'mean', 'barycenter'}, optional
Weights to apply to labels.
algorithm : {'auto', 'ball_tree', 'brute'}, optional
Algorithm used to compute the nearest neighbors. 'ball_tree' will construct a BallTree, while 'brute' will perform brute-force search. 'auto' will guess the most appropriate based on current dataset.

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from scikits.learn.neighbors import NeighborsRegressor
>>> neigh = NeighborsRegressor(n_neighbors=2)
>>> neigh.fit(X, y)
NeighborsRegressor(n_neighbors=2, window_size=1, mode='mean',
          algorithm='auto')
>>> print neigh.predict([[1.5]])
[ 0.5]

Notes

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Overrides: object.__init__

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Returns: list
The list of dtypes supported by this node.
Overrides: Node._get_supported_dtypes

_label(self, x)

 
Overrides: ClassifierNode._label

_stop_training(self, **kwargs)

 
Transform the data and labels lists to array objects and reshape them.

Overrides: Node._stop_training

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Returns: bool
A boolean indicating whether the node can be trained.
Overrides: Node.is_trainable

label(self, x)

 

Predict the target for the provided data This node has been automatically generated by wrapping the scikits.learn.neighbors.NeighborsRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

X : array
A 2-D array representing the test data.
n_neighbors : int, optional
Number of neighbors to get (default is the value passed to the constructor).

Returns

y: array
List of target values (one for each data sample).
Overrides: ClassifierNode.label

stop_training(self, **kwargs)

 

Fit the model using X, y as training data This node has been automatically generated by wrapping the scikits.learn.neighbors.NeighborsRegressor class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

X : array-like, shape = [n_samples, n_features]
Training data.
y : array-like, shape = [n_samples]
Target values, array of integer values.
params : list of keyword, optional
Overwrite keywords from __init__
Overrides: Node.stop_training