|
__init__(self,
input_dim=None,
output_dim=None,
dtype=None,
**kwargs)
NuSVC for sparse matrices (csr). |
|
|
list
|
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
The types can be specified in any format allowed by numpy.dtype. |
|
|
|
|
|
_stop_training(self,
**kwargs)
Transform the data and labels lists to array objects and reshape them. |
|
|
|
label(self,
x)
This function does classification or regression on an array of
test vectors T.
This node has been automatically generated by wrapping the scikits.learn.svm.sparse.classes.NuSVC class
from the sklearn library. The wrapped instance can be accessed
through the scikits_alg attribute.
For a classification model, the predicted class for each
sample in T is returned. For a regression model, the function
value of T calculated is returned. |
|
|
|
stop_training(self,
**kwargs)
Fit the SVM model according to the given training data and
parameters.
This node has been automatically generated by wrapping the scikits.learn.svm.sparse.classes.NuSVC class
from the sklearn library. The wrapped instance can be accessed
through the scikits_alg attribute.
Parameters |
|
|
Inherited from unreachable.newobject :
__long__ ,
__native__ ,
__nonzero__ ,
__unicode__ ,
next
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__ ,
__sizeof__ ,
__subclasshook__
|
|
|
|
_train(self,
x,
labels)
Cumulate all input data in a one dimensional list. |
|
|
|
train(self,
x,
labels)
Cumulate all input data in a one dimensional list. |
|
|
|
|
|
_prob(self,
x,
*args,
**kargs) |
|
|
|
execute(self,
x)
Process the data contained in x . |
|
|
|
prob(self,
x,
*args,
**kwargs)
This function does classification or regression on a test vector T
given a model with probability information.
This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVC class
from the sklearn library. The wrapped instance can be accessed
through the scikits_alg attribute.
Parameters |
|
|
|
rank(self,
x,
threshold=None)
Returns ordered list with all labels ordered according to prob(x)
(e.g., [[3 1 2], [2 1 3], ...]). |
|
|
|
|
|
|
|
|
|
__call__(self,
x,
*args,
**kwargs)
Calling an instance of Node is equivalent to calling
its execute method. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_refcast(self,
x)
Helper function to cast arrays to the internal dtype. |
|
|
|
|
|
copy(self,
protocol=None)
Return a deep copy of the node. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inverse(self,
y,
*args,
**kwargs)
Invert y . |
|
|
|
is_training(self)
Return True if the node is in the training phase,
False otherwise. |
|
|
|
save(self,
filename,
protocol=-1)
Save a pickled serialization of the node to filename .
If filename is None, return a string. |
|
|
|
set_dtype(self,
t)
Set internal structures' dtype. |
|
|
|
|
|
|