Unsupervised Outliers Detection.
This node has been automatically generated by wrapping the scikits.learn.svm.classes.OneClassSVM
class
from the sklearn
library. The wrapped instance can be accessed
through the scikits_alg
attribute.
Estimate the support of a high-dimensional distribution.
|
__init__(self,
input_dim=None,
output_dim=None,
dtype=None,
**kwargs)
Unsupervised Outliers Detection.
This node has been automatically generated by wrapping the scikits.learn.svm.classes.OneClassSVM class
from the sklearn library. The wrapped instance can be accessed
through the scikits_alg attribute.
Estimate the support of a high-dimensional distribution. |
|
|
|
|
|
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
The types can be specified in any format allowed by numpy.dtype. |
|
|
|
_stop_training(self,
**kwargs)
Concatenate the collected data in a single array. |
|
|
|
execute(self,
x)
This function does classification or regression on an array of
test vectors X.
This node has been automatically generated by wrapping the scikits.learn.svm.classes.OneClassSVM class
from the sklearn library. The wrapped instance can be accessed
through the scikits_alg attribute.
For a classification model, the predicted class for each
sample in X is returned. For a regression model, the function
value of X calculated is returned. |
|
|
|
stop_training(self,
**kwargs)
Detects the soft boundary of the set of samples X.
This node has been automatically generated by wrapping the scikits.learn.svm.classes.OneClassSVM class
from the sklearn library. The wrapped instance can be accessed
through the scikits_alg attribute.
Parameters |
|
|
Inherited from unreachable.newobject :
__long__ ,
__native__ ,
__nonzero__ ,
__unicode__ ,
next
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__ ,
__sizeof__ ,
__subclasshook__
|
|
_train(self,
*args)
Collect all input data in a list. |
|
|
|
train(self,
*args)
Collect all input data in a list. |
|
|
|
|
|
__call__(self,
x,
*args,
**kwargs)
Calling an instance of Node is equivalent to calling
its execute method. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_refcast(self,
x)
Helper function to cast arrays to the internal dtype. |
|
|
|
|
|
|
|
|
|
copy(self,
protocol=None)
Return a deep copy of the node. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inverse(self,
y,
*args,
**kwargs)
Invert y . |
|
|
|
is_training(self)
Return True if the node is in the training phase,
False otherwise. |
|
|
|
save(self,
filename,
protocol=-1)
Save a pickled serialization of the node to filename .
If filename is None, return a string. |
|
|
|
set_dtype(self,
t)
Set internal structures' dtype. |
|
|
|
|
|
|