Filter the input data through the most significatives of its
principal components.
    | 
       
     | 
      
        
          __init__(self,
        input_dim=None,
        output_dim=None,
        dtype=None,
        svd=False,
        reduce=False,
        var_rel=1e-12,
        var_abs=1e-15,
        var_part=None) 
      Initializes an object of type 'PCANode'. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
      tuple
     | 
      
        
          _adjust_output_dim(self) 
      This function is used if the output dimensions is smaller than the input
dimension (so only the larger eigenvectors have to be kept). If required it
sets the output dim. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
      numpy.ndarray
     | 
      
        
          _execute(self,
        x,
        n=None) 
      Project the input on the first 'n' principal components. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
      numpy.ndarray
     | 
      
        
          _inverse(self,
        y,
        n=None) 
      Project data from the output to the input space using the
first 'n' components. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
        
          _train(self,
        x) 
      Update the covariance matrix. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
      numpy.ndarray
     | 
      
        
          execute(self,
        x,
        n=None) 
      Project the input on the first 'n' principal components. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
      float
     | 
      
        
          get_explained_variance(self) 
      The explained variance is the  fraction of the original variance
that can be explained by self._output_dim PCA components. If for
example output_dim has been set to 0.95, the explained variance could
be something like 0.958... | 
          
            
            
           | 
         
       
      
     | 
  
    | 
      numpy.ndarray
     | 
      
      
     | 
  
    | 
      numpy.ndarray
     | 
      
        
          get_recmatrix(self,
        transposed=1) 
      Returns the the back-projection matrix
(i.e. the reconstruction matrix). | 
          
            
            
           | 
         
       
      
     | 
  
    | 
      numpy.ndarray
     | 
      
        
          inverse(self,
        y,
        n=None) 
      Project data from the output to the input space using the
first 'n' components. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
        
          train(self,
        x) 
      Update the covariance matrix. | 
          
            
            
           | 
         
       
      
     | 
  
  
    | 
     Inherited from unreachable.newobject:
      __long__,
      __native__,
      __nonzero__,
      __unicode__,
      next
       
    Inherited from object:
      __delattr__,
      __format__,
      __getattribute__,
      __hash__,
      __new__,
      __reduce__,
      __reduce_ex__,
      __setattr__,
      __sizeof__,
      __subclasshook__
       
     | 
  
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
        
          __call__(self,
        x,
        *args,
        **kwargs) 
      Calling an instance of Node is equivalent to calling
its execute method. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
        
          _refcast(self,
        x) 
      Helper function to cast arrays to the internal dtype. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
        
          copy(self,
        protocol=None) 
      Return a deep copy of the node. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
        
          is_training(self) 
      Return True if the node is in the training phase,
False otherwise. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          save(self,
        filename,
        protocol=-1) 
      Save a pickled serialization of the node to filename.
If filename is None, return a string. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          set_dtype(self,
        t) 
      Set internal structures' dtype. | 
          
            
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
      
     |