Home | Trees | Indices | Help |
|
---|
|
Non-Negative matrix factorization by Projected Gradient (NMF) This node has been automatically generated by wrapping the ``scikits.learn.decomposition.nmf.ProjectedGradientNMF`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. **Parameters** X: array, [n_samples, n_features] Data the model will be fit to. n_components: int or None Number of components if n_components is not set all components are kept init: 'nndsvd' | 'nndsvda' | 'nndsvdar' | int | RandomState Method used to initialize the procedure. Default: 'nndsvdar' Valid options: - 'nndsvd': default Nonnegative Double Singular Value - Decomposition (NNDSVD) initialization (better for sparseness) - 'nndsvda': NNDSVD with zeros filled with the average of X - (better when sparsity is not desired) - 'nndsvdar': NNDSVD with zeros filled with small random values - (generally faster, less accurate alternative to NNDSVDa - for when sparsity is not desired) - int seed or RandomState: non-negative random matrices sparseness: 'data' | 'components' | None Where to enforce sparsity in the model. Default: None beta: double Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. Default: 1 eta: double Degree of correctness to mantain, if sparsity is not None. Smaller values mean larger error. Default: 0.1 tol: double Tolerance value used in stopping conditions. Default: 1e-4 max_iter: int Number of iterations to compute. Default: 200 nls_max_iter: int Number of iterations in NLS subproblem. Default: 2000 **Attributes** components_: array, [n_components, n_features] Non-negative components of the data reconstruction_err_: number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. || X - WH ||_2 **Examples** >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from scikits.learn.decomposition import ProjectedGradientNMF >>> model = ProjectedGradientNMF(n_components=2, init=0) >>> model.fit(X) #doctest: +ELLIPSIS ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200, init=<mtrand.RandomState object at 0x...>, beta=1, sparseness=None, n_components=2, tol=0.0001) >>> model.components_ array([[ 0.77032744, 0.11118662], [ 0.38526873, 0.38228063]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00746... >>> model = ProjectedGradientNMF(n_components=2, init=0, ... sparseness='components') >>> model.fit(X) #doctest: +ELLIPSIS ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200, init=<mtrand.RandomState object at 0x...>, beta=1, sparseness='components', n_components=2, tol=0.0001) >>> model.components_ array([[ 1.67481991, 0.29614922], [-0. , 0.4681982 ]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.513... **Notes** This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf
|
|||
|
|||
|
|||
list |
|
||
|
|||
|
|||
|
|||
Inherited from Inherited from |
|||
Inherited from Cumulator | |||
---|---|---|---|
|
|||
|
|||
Inherited from Node | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|
|||
|
|||
bool |
|
|
|||
Inherited from |
|||
Inherited from Node | |||
---|---|---|---|
_train_seq List of tuples: |
|||
dtype dtype |
|||
input_dim Input dimensions |
|||
output_dim Output dimensions |
|||
supported_dtypes Supported dtypes |
|
Non-Negative matrix factorization by Projected Gradient (NMF) This node has been automatically generated by wrapping the ``scikits.learn.decomposition.nmf.ProjectedGradientNMF`` class from the ``sklearn`` library. The wrapped instance can be accessed through the ``scikits_alg`` attribute. **Parameters** X: array, [n_samples, n_features] Data the model will be fit to. n_components: int or None Number of components if n_components is not set all components are kept init: 'nndsvd' | 'nndsvda' | 'nndsvdar' | int | RandomState Method used to initialize the procedure. Default: 'nndsvdar' Valid options: - 'nndsvd': default Nonnegative Double Singular Value - Decomposition (NNDSVD) initialization (better for sparseness) - 'nndsvda': NNDSVD with zeros filled with the average of X - (better when sparsity is not desired) - 'nndsvdar': NNDSVD with zeros filled with small random values - (generally faster, less accurate alternative to NNDSVDa - for when sparsity is not desired) - int seed or RandomState: non-negative random matrices sparseness: 'data' | 'components' | None Where to enforce sparsity in the model. Default: None beta: double Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. Default: 1 eta: double Degree of correctness to mantain, if sparsity is not None. Smaller values mean larger error. Default: 0.1 tol: double Tolerance value used in stopping conditions. Default: 1e-4 max_iter: int Number of iterations to compute. Default: 200 nls_max_iter: int Number of iterations in NLS subproblem. Default: 2000 **Attributes** components_: array, [n_components, n_features] Non-negative components of the data reconstruction_err_: number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. || X - WH ||_2 **Examples** >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from scikits.learn.decomposition import ProjectedGradientNMF >>> model = ProjectedGradientNMF(n_components=2, init=0) >>> model.fit(X) #doctest: +ELLIPSIS ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200, init=<mtrand.RandomState object at 0x...>, beta=1, sparseness=None, n_components=2, tol=0.0001) >>> model.components_ array([[ 0.77032744, 0.11118662], [ 0.38526873, 0.38228063]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00746... >>> model = ProjectedGradientNMF(n_components=2, init=0, ... sparseness='components') >>> model.fit(X) #doctest: +ELLIPSIS ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200, init=<mtrand.RandomState object at 0x...>, beta=1, sparseness='components', n_components=2, tol=0.0001) >>> model.components_ array([[ 1.67481991, 0.29614922], [-0. , 0.4681982 ]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.513... **Notes** This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf
|
|
|
|
Transform the data X according to the fitted NMF model
This node has been automatically generated by wrapping the
Returns
|
|
|
Learn a NMF model for the data X.
This node has been automatically generated by wrapping the
Returns self
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1-MDP on Mon Apr 27 21:56:22 2020 | http://epydoc.sourceforge.net |