Package mdp :: Package nodes :: Class RandomizedPCAScikitsLearnNode
[hide private]
[frames] | no frames]

Class RandomizedPCAScikitsLearnNode



Principal component analysis (PCA) using randomized SVD
This node has been automatically generated by wrapping the ``scikits.learn.decomposition.pca.RandomizedPCA`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
Linear dimensionality reduction using approximated Singular Value
Decomposition of the data and keeping only the most significant
singular vectors to project the data to a lower dimensional space.

This implementation uses a randomized SVD implementation and can
handle both scipy.sparse and numpy dense arrays as input.

**Parameters**

n_components: int
    Maximum number of components to keep: default is 50.

copy: bool
    If False, data passed to fit are overwritten

iterated_power: int, optional
    Number of iteration for the power method. 3 by default.

whiten: bool, optional
    When True (False by default) the ``components_`` vectors are divided
    by the singular values to ensure uncorrelated outputs with unit
    component-wise variances.

    Whitening will remove some information from the transformed signal
    (the relative variance scales of the components) but can sometime
    improve the predictive accuracy of the downstream estimators by
    making there data respect some hard-wired assumptions.

**Attributes**

components_: array, [n_components, n_features]
    Components with maximum variance.

explained_variance_ratio_: array, [n_components]
    Percentage of variance explained by each of the selected components.
    k is not set then all components are stored and the sum of
    explained variances is equal to 1.0

**Examples**

>>> import numpy as np
>>> from scikits.learn.decomposition import RandomizedPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = RandomizedPCA(n_components=2)
>>> pca.fit(X)
RandomizedPCA(copy=True, n_components=2, iterated_power=3, whiten=False)
>>> print pca.explained_variance_ratio_
[ 0.99244289  0.00755711]

See also

PCA
ProbabilisticPCA

**Notes**

References:


* Finding structure with randomness: Stochastic algorithms for
  constructing approximate matrix decompositions Halko, et al., 2009
  (arXiv:909)

* A randomized algorithm for the decomposition of matrices
  Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Principal component analysis (PCA) using randomized SVD This node has been automatically generated by wrapping the ``scikits.learn.decomposition.pca.RandomizedPCA`` class from the ``sklearn`` library.
 
_execute(self, x)
list
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
This node has been automatically generated by wrapping the scikits.learn.decomposition.pca.RandomizedPCA class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.
 
stop_training(self, **kwargs)
Fit the model to the data X. This node has been automatically generated by wrapping the scikits.learn.decomposition.pca.RandomizedPCA class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of numpy.dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
bool
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Principal component analysis (PCA) using randomized SVD
This node has been automatically generated by wrapping the ``scikits.learn.decomposition.pca.RandomizedPCA`` class
from the ``sklearn`` library.  The wrapped instance can be accessed
through the ``scikits_alg`` attribute.
Linear dimensionality reduction using approximated Singular Value
Decomposition of the data and keeping only the most significant
singular vectors to project the data to a lower dimensional space.

This implementation uses a randomized SVD implementation and can
handle both scipy.sparse and numpy dense arrays as input.

**Parameters**

n_components: int
    Maximum number of components to keep: default is 50.

copy: bool
    If False, data passed to fit are overwritten

iterated_power: int, optional
    Number of iteration for the power method. 3 by default.

whiten: bool, optional
    When True (False by default) the ``components_`` vectors are divided
    by the singular values to ensure uncorrelated outputs with unit
    component-wise variances.

    Whitening will remove some information from the transformed signal
    (the relative variance scales of the components) but can sometime
    improve the predictive accuracy of the downstream estimators by
    making there data respect some hard-wired assumptions.

**Attributes**

components_: array, [n_components, n_features]
    Components with maximum variance.

explained_variance_ratio_: array, [n_components]
    Percentage of variance explained by each of the selected components.
    k is not set then all components are stored and the sum of
    explained variances is equal to 1.0

**Examples**

>>> import numpy as np
>>> from scikits.learn.decomposition import RandomizedPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = RandomizedPCA(n_components=2)
>>> pca.fit(X)
RandomizedPCA(copy=True, n_components=2, iterated_power=3, whiten=False)
>>> print pca.explained_variance_ratio_
[ 0.99244289  0.00755711]

See also

PCA
ProbabilisticPCA

**Notes**

References:


* Finding structure with randomness: Stochastic algorithms for
  constructing approximate matrix decompositions Halko, et al., 2009
  (arXiv:909)

* A randomized algorithm for the decomposition of matrices
  Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Returns: list
The list of dtypes supported by this node.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 
This node has been automatically generated by wrapping the scikits.learn.decomposition.pca.RandomizedPCA class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Returns: bool
A boolean indication whether the node can be trained.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Fit the model to the data X. This node has been automatically generated by wrapping the scikits.learn.decomposition.pca.RandomizedPCA class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

X: array-like or scipy.sparse matrix, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples and n_features is the number of features.

Returns

self : object
Returns the instance itself.
Overrides: Node.stop_training