Package mdp :: Package nodes :: Class RidgeCVScikitsLearnNode
[hide private]
[frames] | no frames]

Class RidgeCVScikitsLearnNode


Ridge regression with built-in cross-validation. This node has been automatically generated by wrapping the scikits.learn.linear_model.ridge.RidgeCV class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently.

Parameters

alphas: numpy array of shape [n_alpha]
Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as LogisticRegression or LinearSVC.
fit_intercept : boolean
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
loss_func: callable, optional
function that takes 2 arguments and compares them in order to evaluate the performance of prediciton (small is good) if None is passed, the score of the estimator is maximized
score_func: callable, optional
function that takes 2 arguments and compares them in order to evaluate the performance of prediciton (big is good) if None is passed, the score of the estimator is maximized

See also

Ridge

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
Ridge regression with built-in cross-validation. This node has been automatically generated by wrapping the scikits.learn.linear_model.ridge.RidgeCV class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
Predict using the linear model This node has been automatically generated by wrapping the scikits.learn.linear_model.ridge.RidgeCV class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters
 
stop_training(self, **kwargs)
Fit Ridge regression model This node has been automatically generated by wrapping the scikits.learn.linear_model.ridge.RidgeCV class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of numpy.dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
bool
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

Ridge regression with built-in cross-validation. This node has been automatically generated by wrapping the scikits.learn.linear_model.ridge.RidgeCV class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently.

Parameters

alphas: numpy array of shape [n_alpha]
Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as LogisticRegression or LinearSVC.
fit_intercept : boolean
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
loss_func: callable, optional
function that takes 2 arguments and compares them in order to evaluate the performance of prediciton (small is good) if None is passed, the score of the estimator is maximized
score_func: callable, optional
function that takes 2 arguments and compares them in order to evaluate the performance of prediciton (big is good) if None is passed, the score of the estimator is maximized

See also

Ridge

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

Predict using the linear model This node has been automatically generated by wrapping the scikits.learn.linear_model.ridge.RidgeCV class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

X : numpy array of shape [n_samples, n_features]

Returns

C : array, shape = [n_samples]
Returns predicted values.
Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Returns: bool
A boolean indicating whether the node can be trained.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Fit Ridge regression model This node has been automatically generated by wrapping the scikits.learn.linear_model.ridge.RidgeCV class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

X : numpy array of shape [n_samples, n_features]
Training data
y : numpy array of shape [n_samples] or [n_samples, n_responses]
Target values
sample_weight : float or numpy array of shape [n_samples]
Sample weight
cv : cross-validation generator, optional
If None, Generalized Cross-Validationn (efficient Leave-One-Out) will be used.

Returns

self : Returns self.

Overrides: Node.stop_training