| 
  | __init__(self,
        input_dim=None,
        output_dim=None,
        dtype=None,
        **kwargs)
    (Constructor)
 |  |  Linear model fitted by minimizing a regularized empirical loss with SGD
This node has been automatically generated by wrapping the scikits.learn.linear_model.sparse.stochastic_gradient.SGDRegressorclass
from thesklearnlibrary.  The wrapped instance can be accessed
through thescikits_algattribute.
SGD stands for Stochastic Gradient Descent: the gradient of the loss is
estimated each sample at a time and the model is updated along the way with
a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model
parameters towards the zero vector using either the squared euclidean norm
L2 or the absolute norm L1 or a combination of both (Elastic Net). If the
parameter update crosses the 0.0 value because of the regularizer, the
update is truncated to 0.0 to allow for learning sparse models and
achieve online feature selection. This implementation works with data represented as dense numpy arrays
of floating point values for the features. Parameters 
loss : str, 'squared_loss' or 'huber'The loss function to be used. Defaults to 'squared_loss' which
refers to the ordinary least squares fit. 'huber' is an epsilon
insensitive loss function for robust regression.penalty : str, 'l2' or 'l1' or 'elasticnet'The penalty (aka regularization term) to be used. Defaults to 'l2'
which is the standard regularizer for linear SVM models. 'l1' and
'elasticnet' migh bring sparsity to the model (feature selection)
not achievable with 'l2'.alpha : floatConstant that multiplies the regularization term. Defaults to 0.0001rho : floatThe Elastic Net mixing parameter, with 0 < rho <= 1.
Defaults to 0.85.fit_intercept: boolWhether the intercept should be estimated or not. If False, the
data is assumed to be already centered. Defaults to True.n_iter: intThe number of passes over the training data (aka epochs).
Defaults to 5.shuffle: boolWhether or not the training data should be shuffled after each epoch.
Defaults to False.seed: int, optionalThe seed of the pseudo random number generator to use when
shuffling the data.verbose: integer, optionalThe verbosity levelp : floatEpsilon in the epsilon insensitive huber loss function;
only if loss=='huber'.learning_rate : string, optionalThe learning rate: 
constant: eta = eta0optimal: eta = 1.0/(t+t0)invscaling: eta = eta0 / pow(t, power_t) [default]eta0 : double, optionalThe initial learning rate [default 0.01].power_t : double, optionalThe exponent for inverse scaling learning rate [default 0.25]. Attributes 
coef_: array, shape = [n_features]Weights asigned to the features.intercept_: array, shape = [1]The intercept term. Examples 
>>> import numpy as np
>>> from scikits.learn import linear_model
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = linear_model.sparse.SGDRegressor()
>>> clf.fit(X, y)
SGDRegressor(loss='squared_loss', power_t=0.25, shuffle=False, verbose=0,
       n_iter=5, learning_rate='invscaling', fit_intercept=True,
       penalty='l2', p=0.1, seed=0, eta0=0.01, rho=1.0, alpha=0.0001)See also RidgeRegression, ElasticNet, Lasso, SVR 
    Overrides:
        object.__init__
     |