Package mdp :: Package nodes :: Class SVRScikitsLearnNode
[hide private]
[frames] | no frames]

Class SVRScikitsLearnNode


epsilon-Support Vector Regression. This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVR class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. The free parameters in the model are C and epsilon.

Parameters

nu : float, optional
An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. Only available if impl='nu_svc'
kernel : string, optional
Specifies the kernel type to be used in the algorithm. one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'. If none is given 'rbf' will be used.
epsilon : float
epsilon in the epsilon-SVR model.
degree : int, optional
degree of kernel function is significant only in poly, rbf, sigmoid
gamma : float, optional
kernel coefficient for rbf and poly, by default 1/n_features will be taken.
C : float, optional (default=1.0)
penalty parameter C of the error term.
probability: boolean, optional (False by default)
enable probability estimates. This must be enabled prior to calling prob_predict.
tol: float, optional
precision for stopping criteria
coef0 : float, optional
independent term in kernel function. It is only significant in poly/sigmoid.
cache_size: float, optional
specify the size of the cache (in MB)
shrinking: boolean, optional
wether to use the shrinking heuristic.

Attributes

support_ : array-like, shape = [n_SV]
Index of support vectors.
support_vectors_ : array-like, shape = [nSV, n_features]
Support vectors.
dual_coef_ : array, shape = [n_classes-1, n_SV]
Coefficients of the support vector in the decision function.
coef_ : array, shape = [n_classes-1, n_features]
Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel.
intercept_ : array, shape = [n_class * (n_class-1) / 2]
Constants in decision function.

Examples

>>> from scikits.learn.svm import SVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = SVR(C=1.0, epsilon=0.2)
>>> clf.fit(X, y)
SVR(kernel='rbf', C=1.0, probability=False, degree=3, epsilon=0.2,
  shrinking=True, tol=0.001, cache_size=100.0, coef0=0.0, nu=0.5,
  gamma=0.1)

See also

NuSVR

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
epsilon-Support Vector Regression. This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVR class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. The free parameters in the model are C and epsilon.
 
_execute(self, x)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
 
_stop_training(self, **kwargs)
Concatenate the collected data in a single array.
 
execute(self, x)
This function does classification or regression on an array of test vectors X. This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVR class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. For a classification model, the predicted class for each sample in X is returned. For a regression model, the function value of X calculated is returned.
 
stop_training(self, **kwargs)
Fit the SVM model according to the given training data and parameters. This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVR class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of numpy.dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert y.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
bool
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None, **kwargs)
(Constructor)

 

epsilon-Support Vector Regression. This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVR class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. The free parameters in the model are C and epsilon.

Parameters

nu : float, optional
An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. Only available if impl='nu_svc'
kernel : string, optional
Specifies the kernel type to be used in the algorithm. one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'. If none is given 'rbf' will be used.
epsilon : float
epsilon in the epsilon-SVR model.
degree : int, optional
degree of kernel function is significant only in poly, rbf, sigmoid
gamma : float, optional
kernel coefficient for rbf and poly, by default 1/n_features will be taken.
C : float, optional (default=1.0)
penalty parameter C of the error term.
probability: boolean, optional (False by default)
enable probability estimates. This must be enabled prior to calling prob_predict.
tol: float, optional
precision for stopping criteria
coef0 : float, optional
independent term in kernel function. It is only significant in poly/sigmoid.
cache_size: float, optional
specify the size of the cache (in MB)
shrinking: boolean, optional
wether to use the shrinking heuristic.

Attributes

support_ : array-like, shape = [n_SV]
Index of support vectors.
support_vectors_ : array-like, shape = [nSV, n_features]
Support vectors.
dual_coef_ : array, shape = [n_classes-1, n_SV]
Coefficients of the support vector in the decision function.
coef_ : array, shape = [n_classes-1, n_features]
Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel.
intercept_ : array, shape = [n_class * (n_class-1) / 2]
Constants in decision function.

Examples

>>> from scikits.learn.svm import SVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = SVR(C=1.0, epsilon=0.2)
>>> clf.fit(X, y)
SVR(kernel='rbf', C=1.0, probability=False, degree=3, epsilon=0.2,
  shrinking=True, tol=0.001, cache_size=100.0, coef0=0.0, nu=0.5,
  gamma=0.1)

See also

NuSVR

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_get_supported_dtypes(self)

 
Return the list of dtypes supported by this node. The types can be specified in any format allowed by numpy.dtype.
Overrides: Node._get_supported_dtypes

_stop_training(self, **kwargs)

 
Concatenate the collected data in a single array.
Overrides: Node._stop_training

execute(self, x)

 

This function does classification or regression on an array of test vectors X. This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVR class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. For a classification model, the predicted class for each sample in X is returned. For a regression model, the function value of X calculated is returned.

For an one-class model, +1 or -1 is returned.

Parameters

X : array-like, shape = [n_samples, n_features]

Returns

C : array, shape = [n_samples]

Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.
Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.
Returns: bool
A boolean indicating whether the node can be trained.
Overrides: Node.is_trainable

stop_training(self, **kwargs)

 

Fit the SVM model according to the given training data and parameters. This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVR class from the sklearn library. The wrapped instance can be accessed through the scikits_alg attribute. Parameters

X : array-like, shape = [n_samples, n_features]
Training vector, where n_samples is the number of samples and n_features is the number of features.
y : array, shape = [n_samples]
Target values. Array of floating-point numbers.

Returns

self : object
Returns self.
Overrides: Node.stop_training