| 
  | __init__(self,
        input_dim=None,
        output_dim=None,
        dtype=None,
        **kwargs)
    (Constructor)
 |  |  epsilon-Support Vector Regression.
This node has been automatically generated by wrapping the scikits.learn.svm.classes.SVRclass
from thesklearnlibrary.  The wrapped instance can be accessed
through thescikits_algattribute.
The free parameters in the model are C and epsilon. Parameters 
nu : float, optionalAn upper bound on the fraction of training errors and a lower bound of
the fraction of support vectors. Should be in the interval (0, 1].  By
default 0.5 will be taken.  Only available if impl='nu_svc'kernel : string, optionalSpecifies the kernel type to be used in the algorithm.
one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'.
If none is given 'rbf' will be used.epsilon : floatepsilon in the epsilon-SVR model.degree : int, optionaldegree of kernel function
is significant only in poly, rbf, sigmoidgamma : float, optionalkernel coefficient for rbf and poly, by default 1/n_features
will be taken.C : float, optional (default=1.0)penalty parameter C of the error term.probability: boolean, optional (False by default)enable probability estimates. This must be enabled prior
to calling prob_predict.tol: float, optionalprecision for stopping criteriacoef0 : float, optionalindependent term in kernel function. It is only significant
in poly/sigmoid.cache_size: float, optionalspecify the size of the cache (in MB)shrinking: boolean, optionalwether to use the shrinking heuristic. Attributes 
support_: array-like, shape = [n_SV]Index of support vectors.support_vectors_: array-like, shape = [nSV, n_features]Support vectors.dual_coef_: array, shape = [n_classes-1, n_SV]Coefficients of the support vector in the decision function.coef_: array, shape = [n_classes-1, n_features]Weights asigned to the features (coefficients in the primal
problem). This is only available in the case of linear kernel.intercept_: array, shape = [n_class * (n_class-1) / 2]Constants in decision function. Examples 
>>> from scikits.learn.svm import SVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = SVR(C=1.0, epsilon=0.2)
>>> clf.fit(X, y)
SVR(kernel='rbf', C=1.0, probability=False, degree=3, epsilon=0.2,
  shrinking=True, tol=0.001, cache_size=100.0, coef0=0.0, nu=0.5,
  gamma=0.1) See also NuSVR 
    Overrides:
        object.__init__
     |