Package mdp :: Package parallel :: Class ParallelSFANode
[hide private]
[frames] | no frames]

Class ParallelSFANode


Parallel version of MDP SFA node.

Instance Methods [hide private]
 
_fork(self)
Hook method for forking with default implementation.
 
_join(self, forked_node)
Combine the covariance matrices.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from ParallelExtensionNode
 
_default_fork(self)
Default implementation of _fork.
 
fork(self)
Return a new instance of this node class for remote training.
 
join(self, forked_node)
Absorb the trained node from a fork into this parent node.
    Inherited from nodes.SFANode
 
__init__(self, input_dim=None, output_dim=None, dtype=None, include_last_sample=True, rank_deficit_method='none')
Initialize an object of type 'SFANode'.
 
_check_train_args(self, x, *args, **kwargs)
Raises exception if time dimension does not have enough elements.
numpy.ndarray
_execute(self, x, n=None)
Compute the output of the slowest functions.
 
_init_cov(self)
 
_inverse(self, y)
 
_set_range(self)
 
_stop_training(self, debug=False)
 
_train(self, x, include_last_sample=None)
Training method.
numpy.ndarray
execute(self, x, n=None)
Compute the output of the slowest functions.
 
get_eta_values(self, t=1)
Return the eta values of the slow components learned during the training phase. If the training phase has not been completed yet, call stop_training.
 
inverse(self, y)
Invert y.
 
set_rank_deficit_method(self, rank_deficit_method)
 
stop_training(self, debug=False)
Stop the training phase.
numpy.ndarray
time_derivative(self, x)
Compute the linear approximation of the time derivative
 
train(self, x, include_last_sample=None)
Training method.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of numpy.dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
    Inherited from ParallelExtensionNode
 
_join_covariance(cov, forked_cov)
Helper method to join two CovarianceMatrix instances.
 
use_execute_fork()
Return True if node requires a fork / join even during execution.
    Inherited from Node
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Class Variables [hide private]
    Inherited from ParallelExtensionNode
  extension_name = 'parallel'
hash(x)
Instance Variables [hide private]
    Inherited from nodes.SFANode
  avg
Mean of the input data (available after training)
  d
Delta values corresponding to the SFA components (generalized eigenvalues). [See the docs of the get_eta_values method for more information]
  sf
Matrix of the SFA filters (available after training)
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

_fork(self)

 
Hook method for forking with default implementation.

Overwrite this method for nodes that can be parallelized.
You can use _default_fork, if that is compatible with your node class,
typically the hard part is the joining.

Overrides: ParallelExtensionNode._fork
(inherited documentation)

_join(self, forked_node)

 
Combine the covariance matrices.

Overrides: ParallelExtensionNode._join