Package mdp :: Package nodes :: Class WhiteningNode
[hide private]
[frames] | no frames]

Class WhiteningNode


Whiten the input data by filtering it through the most significant of its principal components.

All output signals have zero mean, unit variance and are decorrelated.

Instance Methods [hide private]
 
_stop_training(self, debug=False)
Stop the training phase.
numpy.ndarray
get_eigenvectors(self)
Return the eigenvectors of the covariance matrix.
numpy.ndarray
get_recmatrix(self, transposed=1)
Returns the the back-projection matrix (i.e. the reconstruction matrix).
 
stop_training(self, debug=False)
Stop the training phase.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from PCANode
 
__init__(self, input_dim=None, output_dim=None, dtype=None, svd=False, reduce=False, var_rel=1e-12, var_abs=1e-15, var_part=None)
Initializes an object of type 'PCANode'.
tuple
_adjust_output_dim(self)
This function is used if the output dimensions is smaller than the input dimension (so only the larger eigenvectors have to be kept). If required it sets the output dim.
 
_check_output(self, y)
numpy.ndarray
_execute(self, x, n=None)
Project the input on the first 'n' principal components.
numpy.ndarray
_inverse(self, y, n=None)
Project data from the output to the input space using the first 'n' components.
 
_set_output_dim(self, n)
 
_train(self, x)
Update the covariance matrix.
numpy.ndarray
execute(self, x, n=None)
Project the input on the first 'n' principal components.
float
get_explained_variance(self)
The explained variance is the fraction of the original variance that can be explained by self._output_dim PCA components. If for example output_dim has been set to 0.95, the explained variance could be something like 0.958...
numpy.ndarray
get_projmatrix(self, transposed=1)
Returns the projection matrix.
numpy.ndarray
inverse(self, y, n=None)
Project data from the output to the input space using the first 'n' components.
 
train(self, x)
Update the covariance matrix.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of Node is equivalent to calling its execute method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of numpy.dtype objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to filename. If filename is None, return a string.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
    Inherited from Node
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Instance Variables [hide private]
  avg
Mean of the input data (available after training).
  d
Variance corresponding to the PCA components (eigenvalues of the covariance matrix).
  explained_variance
When output_dim has been specified as a fraction of the total variance, this is the fraction of the total variance that is actually explained.
  v
Transposed of the projection matrix (available after training).
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples:
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

_stop_training(self, debug=False)

 
Stop the training phase.
Parameters:
  • debug (bool) - Determines if singular matrices itself are stored in self.cov_mtx and self.dcov_mtx to be examined, given that stop_training fails because of singular covmatrices. Default is False.
Raises:
  • mdp.NodeException - If negative eigenvalues occur, the covariance matrix may be singular or no component amounts to variation exceeding var_abs.
Overrides: Node._stop_training

get_eigenvectors(self)

 
Return the eigenvectors of the covariance matrix.
Returns: numpy.ndarray
The eigenvectors of the covariance matrix.

get_recmatrix(self, transposed=1)

 
Returns the the back-projection matrix (i.e. the reconstruction matrix).
Parameters:
  • transposed (bool) - Determines whether the transposed back-projection matrix (i.e. the reconstruction matrix) is returned. Default is True.
Returns: numpy.ndarray
The back-projection matrix (i.e. the reconstruction matrix).
Overrides: PCANode.get_recmatrix

stop_training(self, debug=False)

 
Stop the training phase.
Parameters:
  • debug (bool) - Determines if singular matrices itself are stored in self.cov_mtx and self.dcov_mtx to be examined, given that stop_training fails because of singular covmatrices. Default is False.
Raises:
  • mdp.NodeException - If negative eigenvalues occur, the covariance matrix may be singular or no component amounts to variation exceeding var_abs.
Overrides: Node.stop_training

Instance Variable Details [hide private]

avg

Mean of the input data (available after training).

d

Variance corresponding to the PCA components (eigenvalues of the covariance matrix).

explained_variance

When output_dim has been specified as a fraction of the total variance, this is the fraction of the total variance that is actually explained.

v

Transposed of the projection matrix (available after training).