All output signals have zero mean, unit variance and are decorrelated.
|
|
numpy.ndarray
|
|
numpy.ndarray
|
get_recmatrix(self,
transposed=1)
Returns the the back-projection matrix
(i.e. the reconstruction matrix). |
|
|
|
|
Inherited from unreachable.newobject :
__long__ ,
__native__ ,
__nonzero__ ,
__unicode__ ,
next
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__ ,
__sizeof__ ,
__subclasshook__
|
|
__init__(self,
input_dim=None,
output_dim=None,
dtype=None,
svd=False,
reduce=False,
var_rel=1e-12,
var_abs=1e-15,
var_part=None)
Initializes an object of type 'PCANode'. |
|
|
tuple
|
_adjust_output_dim(self)
This function is used if the output dimensions is smaller than the input
dimension (so only the larger eigenvectors have to be kept). If required it
sets the output dim. |
|
|
|
|
numpy.ndarray
|
_execute(self,
x,
n=None)
Project the input on the first 'n' principal components. |
|
|
numpy.ndarray
|
_inverse(self,
y,
n=None)
Project data from the output to the input space using the
first 'n' components. |
|
|
|
|
|
_train(self,
x)
Update the covariance matrix. |
|
|
numpy.ndarray
|
execute(self,
x,
n=None)
Project the input on the first 'n' principal components. |
|
|
float
|
get_explained_variance(self)
The explained variance is the fraction of the original variance
that can be explained by self._output_dim PCA components. If for
example output_dim has been set to 0.95, the explained variance could
be something like 0.958... |
|
|
numpy.ndarray
|
|
numpy.ndarray
|
inverse(self,
y,
n=None)
Project data from the output to the input space using the
first 'n' components. |
|
|
|
train(self,
x)
Update the covariance matrix. |
|
|
|
|
|
__call__(self,
x,
*args,
**kwargs)
Calling an instance of Node is equivalent to calling
its execute method. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_refcast(self,
x)
Helper function to cast arrays to the internal dtype. |
|
|
|
|
|
|
|
copy(self,
protocol=None)
Return a deep copy of the node. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
is_training(self)
Return True if the node is in the training phase,
False otherwise. |
|
|
|
save(self,
filename,
protocol=-1)
Save a pickled serialization of the node to filename .
If filename is None, return a string. |
|
|
|
set_dtype(self,
t)
Set internal structures' dtype. |
|
|
|
|
|
|